

Impact of Process Temperature on the Cost of Concentrating Solar Thermal Industrial Process Heat (IPH)

Presented by: Alex Zolan¹

Additional Contributors: Evan Westphal¹, Chad Augustine¹, Ken Armijo², Ye Wang³, John Pye³

¹National Renewable Energy Laboratory; ²Sandia National Laboratories; ³Australia National University

July 17, 2024 • ASME 2024 Energy Sustainability Conference

Agenda

1	Motivation
2	Methodology
3	Results
4	Ongoing and Future Work

This talk focuses on work supporting the Technoeonomic Analysis (TEA) task within HelioCon

Heliostat Consortium (HelioCon) Objectives

- Form U.S. centers of excellence focused on heliostat technologies to restore U.S. leadership
- Develop strategic core validation and modeling capabilities and infrastructure at DOE's national labs (NREL and Sandia)
- Promote workforce development by integrating academia, industry, and all stakeholders

Image source: <u>https://heliocon.org/about/about_heliocon.html</u>

We attempt to address a TEA gap in the HelioCon Roadmap Study

- Identified TEA gaps:
 - Lack of a validated model for:
 - solar field O&M costs
 - high-temperature IPH applications
- Path forward:
 - Develop a heliostat field O&M model that accounts for the cost of mirror washing and heliostat repairs and replacements, and their impact on heliostat field performance.
 - Develop a CSP model that creates and incorporates correlations for tower and receiver costs for IPH applications.
 - Coordinate work with other HelioCon topics, perform sensitivity analysis in models, and engage industry to improve knowledge gaps.

Schematic of a CSP plant; our analysis is restricted to the solar field, tower and receiver encircled above. Image source: Cox et al. (2023)

Methodology

- Choose SIPH process temperatures for analysis
 - 900, 1,200 and 1,550°C
- 2. Develop base case field layout for each process temperature
 - SolarPILOT is our modeling tool (Wagner et al. 2018)
 - Collaborating with Australia
 National University, using
 SolarTherm
- 3. Add cost estimates
- Optimize concentration ratio (CR) and solar field
- 5. Parametric studies

Schematic of a CSP plant; our analysis is restricted to the solar field, tower and receiver encircled above. Image source: Cox et al. (2023)

components •

integration

conceptual design components integration mass production heliostat field

Assumptions

- Limit analysis to field, receiver, and tower
- Assume polar field and cavity receiver are needed
- Assume blackbody radiation for heat loss from cavity receiver
- Fixed heliostat-receiver height ratio across runs (~0.7)
 - Attempt to keep spillage consistent across search
- Cost of heliostats, tower consistent with baseline HelioCon studies
- Fixed per-kW rating cost for receiver
- Our measure of heat delivery for our levelized cost of heat (LCOH) is delivery to the receiver, net of radiation loss
 - Our baseline case to calculate relative LCOH is a ~600MW_{th} surround field

Schematic of a CSP plant; our analysis is restricted to the solar field, tower and receiver encircled above. Image source: Cox et al. (2023)

We assume blackbody radiation losses at the receiver aperture

- A square, flat-plate receiver in SolarPILOT represents the aperture of a cavity receiver
- We assume uniform, blackbody loss at the aperture
 - Consistent with assumptions by Steinfeld and Schubnell (1993) and, more recently, Li et al. (2021)
- Radiation losses increase significantly with temperature
 - Stefan-Boltzmann's law: radiation directly proportional to the 4th power of temperature (losses ~ T⁴)

Results: Key tradeoff when selecting a CR is between spillage and thermal (radiation) losses

Results: Maximum efficiency, minimum LCOH as function of CR

Key insights:

- Relative levelized costs increase significantly as temperature increases
- Optimal CR depends more on the operating temperature than the objective (min LCOH vs. max efficiency)

System efficiency and relative LCOH as a function of design CR for a case study with a 160-MW_{th} receiver operating at 1,200 °C

Results: Minimum-cost solar field size as a function of tempratuure

Key insights:

- Optimum field size is smaller than conventional CSP plant (~800-1,000 MW_{th}) and in line with some existing IPH plant sizes (Lee et al., 2023)
- 2. Optimum size decreases as receiver temperature increases

Minimum relative LCOH obtained as a function of receiver thermal power rating

Results: Sensitivity of Heliostat Slope Error

- Varied heliostat slope error over range of 1-3 mrad
- Assumes 160-MW_{th} receiver at 1,200 °C
- Slope error impact increases as receiver target temperature increases

Relative LCOH as a function of CR as heliostat slope error varies, assuming a 1,200 °C receiver target temperature and a 160-MW_{th} power rating

(\$/m), receiver $(\$/m^2)$ and heliostat ($\frac{m^2}{by} + -50\%$

Did not see significant change ulletin LCOH (+/-0.5 cents/kWh) despite large changes in component costs

Sensitivity Analysis Varied the costs of the tower

Component, Temp (°C)

Component Cost Multiplier

Relative LCOH as a function of subsystem cost for each temperature in our study, assuming a 160-MW_{th} receiver power rating

conceptual design integration mass production heliostat field components

Results: Sensitivity of Subsystem Costs

- We present a study of solar fields and their relative levelized costs for a collection of potential IPH applications
- We demonstrate that the operating temperature has a significant impact on cost and attainable (combined optical and thermal) efficiency
- We show that the heliostat's optical precision has a more significant impact on levelized costs, when compared to subsystem cost

Specific design capacity and capacity factor

conceptual design components integration mass production heliostat field

Questions?

www.nrel.gov csp.sandia.gov

Subscribe to HelioCon:

- Heliostat.Consortium@nrel.gov

References

- Zhu, Guangdong, et al. Roadmap to advance heliostat technologies for concentrating solar-thermal power. No. NREL/TP-5700-83041. National Renewable Energy Lab.(NREL), Golden, CO (United States), 2022.
- Zhu, Guangdong, et al. "HelioCon: A roadmap for advanced heliostat technologies for concentrating solar power." Solar Energy 264 (2023): 111917.
- Augustine, Chad, et al. "Analysis of Gaps in Techno-Economic Analysis to Advance Heliostat Technologies for Concentrating Solar-Thermal Power." Journal of Solar Energy Engineering 146 (2024): 061002-1.
- Cox, John L., et al. "Real-time dispatch optimization for concentrating solar power with thermal energy storage." Optimization and engineering 24.2 (2023): 847-884.
- Li, Lifeng, et al. "Temperature-based optical design, optimization and economics of solar polar-field central receiver systems with an optional compound parabolic concentrator." Solar energy 206 (2020): 1018-1032.
- McMillan, Colin, et al. Opportunities for solar industrial process heat in the United States. No. NREL/TP-6A20-77760. National Renewable Energy Lab.(NREL), Golden, CO (United States); Northwestern Univ., Evanston, IL (United States), 2021.
- Lee, Leok, et al. "Pathways to the use of concentrated solar heat for high temperature industrial processes." Solar Compass 5 (2023): 100036.
- Wagner, Michael J., and Tim Wendelin. "SolarPILOT: A power tower solar field layout and characterization tool." Solar Energy 171 (2018): 185-196.